Development of an MRI-Compatible Dynamic and Deformable Imaging Phantom

Group 29 Members: Jacie Sales, Leah Laux Mentors: Parag Parikh, Olga Green

ViewRay System

-Introduction-

Design Alternatives

es Chosen Design

Organization

Project Scope

• Design an imaging phantom that can be used to assess the accuracy of the ViewRay software in calculating the deformation of moving organs in an MRI scanner

Project Scope

- Design an imaging phantom that can be used to assess the accuracy of the ViewRay software in calculating the deformation of moving organs in an MRI scanner
- Capable of:
 - Translating in 3 dimensions
 - Deforming in 3 dimensions
 - Rotating in 3 dimensions

Project Scope

- Design an imaging phantom that can be used to assess the accuracy of the ViewRay software in calculating the deformation of moving organs in an MRI scanner
- Capable of:
 - Translating in 3 dimensions
 - Deforming in 3 dimensions
 - Rotating in 3 dimensions
- In a Way that is:
 - (Binary) controllable
 - Precisely known
 - Able to operate in an MRI environment
 - Able to be imaged by an MRI

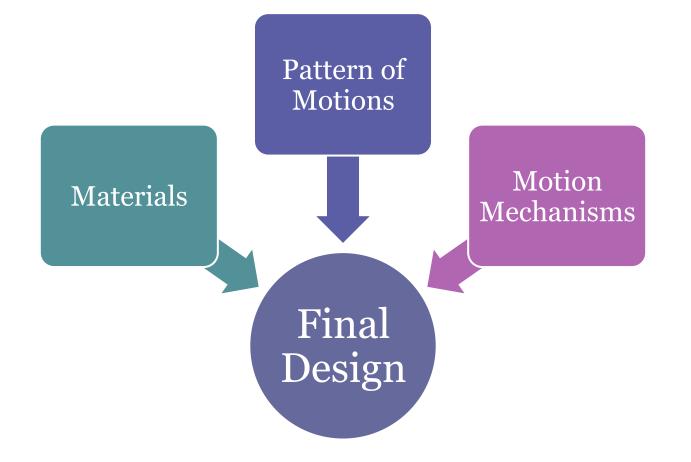
Project Specifications

Translation	Deformation	Rotation	Volume Change
x, y, and z directions	x, y, and z directions	about x, y, and z axes	Known pre and post deformation volumes
5 ± 0.5 cm	2 ± 0.5 cm	± 0.5°	25%

<u>-Introduction-</u> Design Alternatives Chosen Design Organization

Project Specifications

Translation	Deformation	Rotation	Volume Change
x, y, and z directions	x, y, and z directions	about x, y, and z axes	Known pre and post deformation volumes
5 ± 0.5 cm	2 ± 0.5 cm	\pm 0.5°	25%

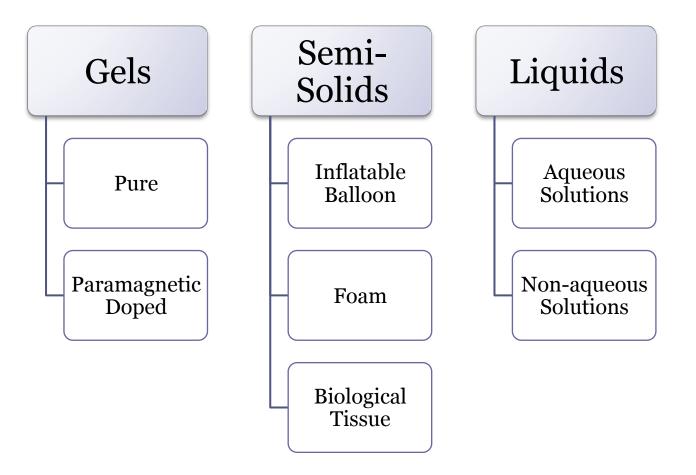

Motion must be:

- Reproducible and stable
- Precisely known
- (Binary controllable)

Physical Characteristics:

- Weight \leq 150 lbs
- Dimensions: ≤ 50x30x50 cm
- Maximum price: \$10,000 \$30,000

Plan of Action


<u>-Introduction-</u> Design Alternatives Chosen Design Organization

Materials

- MRI Compatible
 - No metals
- MR Imageable
 - Tissue-like relaxation times
 - T₁ time to become magnetized in magnetic field

- Thermal interactions
- T₂ length of transverse magnetization in a perfectly uniform magnetic field
 - Static internal fields

Materials

Introduction -<u>Design Alternatives-</u> Chosen Design Organization

Gels

- Agarose
- Gelatin
- Zerdine
- Polyvinyl Alcohol Cryogel (PVA-C)

- Silicone
- Soft Polyvinyl Cholride (PVC) / Plastisol
- Carrageenan gel
- Polyacrylamide

Gels

- Agarose
- Gelatin
- Zerdine
- Polyvinyl Alcohol Cryogel (PVA-C)

- Silicone
- Soft Polyvinyl Cholride (PVC) / Plastisol
- Carrageenan gel
- Polyacrylamide

* paramagnetic ions

-<u>Design Alternatives-</u>

Chosen Design

Organization

Pugh Chart			Pure Gels								Paramagnetic Doped Gels					Non-gel Materials			
	ageable terials	Weight	Agarose	Gelatin	Zerdine	PVA-C	Silicone	S oft PVC	Garrageenan	Polyacrylamide	Agarose- Copper	Agarose- Nickel	PVC – Nickel Chloride	CAG	Balloon	Foam	Biological Tissue		
E	Consistent	8	8	8	8	8	8	8	8	8	8	8	8	8	4	4	6		
natio	Force	10	6	6	10	10	8	8	10	8	6	6	10	10	4	2	6		
Deformation	Stretch	10	6	8	8	4	6	6	6	6	6	6	4	6	10	2	8		
Δ	Compressible	4	2	2	2	2	4	2	2	2	2	2	2	2	2	8	4		
MRI Properties	T1	10	4	4	4	4	4	4	4	4	10	10	10	10	0	0	10		
Prope	T2	10	6	6	6	6	6	6	4	6	6	6	6	10	0	0	10		
٨	Reusable	10	4	4	8	8	8	6	8	6	4	4	6	8	4	10	2		
1 - E	Durable	8	6	6	8	10	8	8	8	8	8	8	8	8	4	4	4		
Usability	Temperature Resistant	2	6	6	10	8	8	8	8	8	6	6	8	8	4	10	2		
Ď	Ease of Preparation	8	8	8	10	2	6	6	6	6	4	4	2	4	10	8	8		
	Modifiable	4	6	6	2	6	6	6	6	6	8	8	8	10	2	2	2		
	<u>Total</u>		480	500	604	528	552	524	544	524	532	532	560	664	348	328	532		

	igh Chart					Pure	Gels					aram Dope			Non-gel Materials			
	ageable aterials	Weight	Agarose	Gelatin	Zerdine	PVA-C	Silicone	S oft PVC	Carrageenan	Polyacrylamide	Agarose– Copper	Agarose- Nickel	PVC – Nickel Chloride	୯୯୧	Balloon	Foam	Biological Tissue	
E	Consistent	8	8	8	8	8	8	8	8	8	8	8	8	8	4	4	6	
natic	Force	10	6	6	10	10	8	8	10	8	6	6	10	10	4	2	6	
Deformation	Stretch	10	6	8	8	4	6	6	6	6	6	6	4	6	10	2	8	
	Compressible	4	2	2	2	2	4	2	2	2	2	2	2	2	2	8	4	
MRI	T1 T2	10	4	4	4	4	4	4	4	4	10	10	10	10	0	0	10	
Σ	T2	10	6	6	6	6	6	6	4	6	6	6	6	10	0	0	10	
٨	Reusable	10	4	4	8	8	8	6	8	6	4	4	6	8	4	10	2	
i iii	Durable	8	6	6	8	10	8	8	8	8	8	8	8	8	4	4	4	
Usability	Temperature Resistant	2	6	6	10	8	8	8	8	8	6	6	8	8	4	10	2	
Ĕ	Ease of Preparation	8	8	8	10	2	6	6	6	6	4	4	2	4	10	8	8	
	Modifiable	4	6 480	6	2	6	6	6	6 544	6	8	8	8 560	10	2 348	2	2	
	<u>Total</u>		480	500	604	528	552	524	544	524	532	532	500	664	348	328	532	

Liquids

- Water
- Aqueous Solutions

Aqueous Solutions	T1 Equation	T2 Equation
Aqueous Nickel	$T_1(s) = 1/(632 [Ni (mole/L)] + 0.337)$	$T_2(s) = 1/(691 [Ni (mole/L)] + 1.133)$
Nickel in 10 wt % gelatin	$T_1(s) = 1/(732 [Ni (mole/L)] + 0.817)$	$T_2(s) = 1/(892 [Ni (mole/L)] + 4.635)$
Aqueous Oxygen	$T_1(s) = 1/(0.013465 [O_2 (mg/L)] + 0.232357)$	
Aqueous Manganese	$T_1(s) = 1/(5722 [Mn (mole/L)] + 0.0846)$	$T_2(s) = 1/(60386 [Mn (mole/L)] + 3.644)$
Aqueous Copper	$T_1(s) = 1/(606 [Cu (mole/L)] + 0.349)$	$T_2(s) = 1/(850 [Cu (mole/L)] + 0.0357)$

Introduction -<u>Design Alternatives-</u> Chosen Design Organization

Liquids

- Oil
- Silicone Oil
 - Low T₂ relaxation times
 - Add small amounts of non-ionic paramagnetic compounds (gadolinium beta-diketonate) to reduce T₁

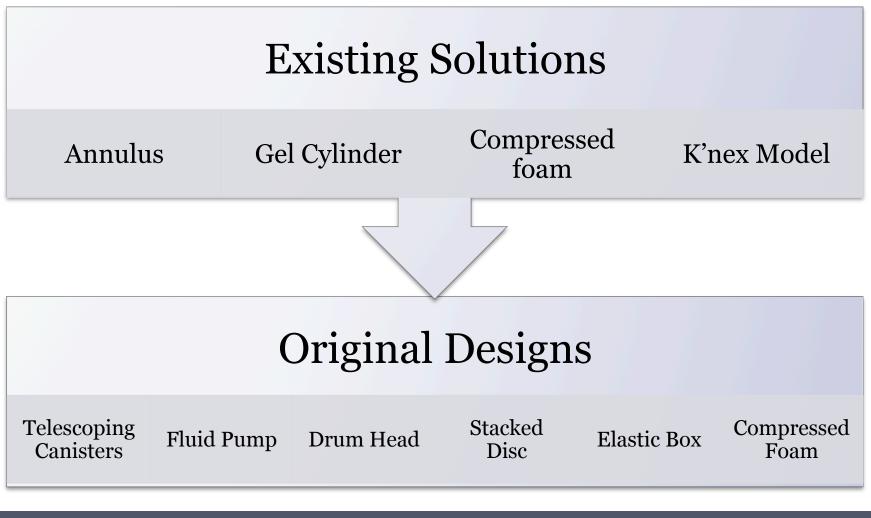
17

• Dissolves with vigorous stirring and/or gentle heating

Non-Imageable Materials

• Shells

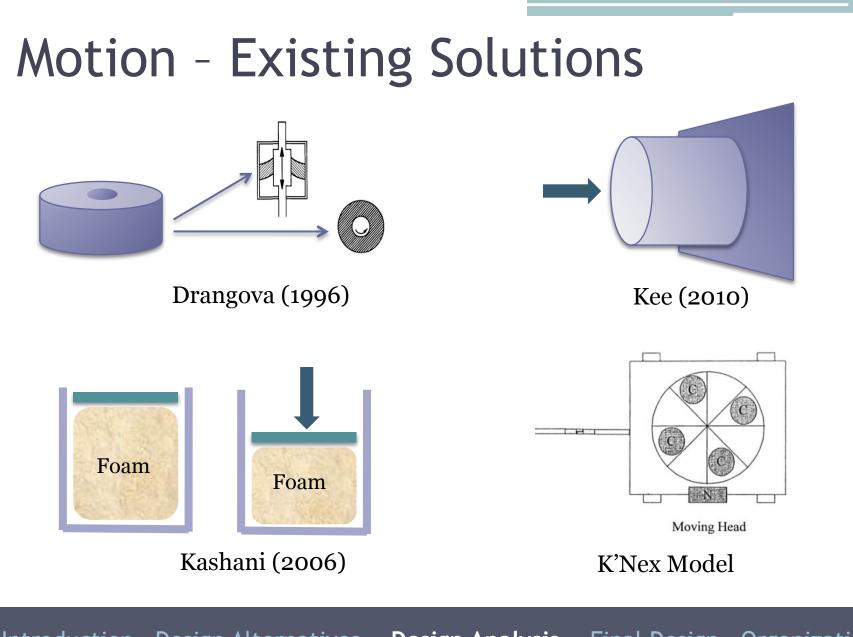
- Commercial Diagnostic Thoracic Phantom
- Polymethyl methacrylate (Plexiglas)
- Polyoxymethylene (Delrin)
- Tumor Insets
 - Rubber
 - Plastic
 - Glass



-<u>Design Alternatives-</u>

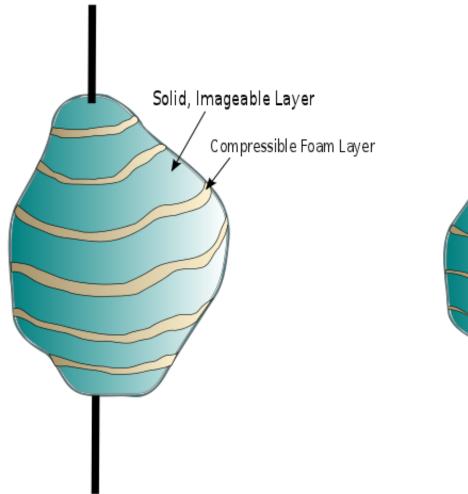
Chosen Design

Organization


Motion

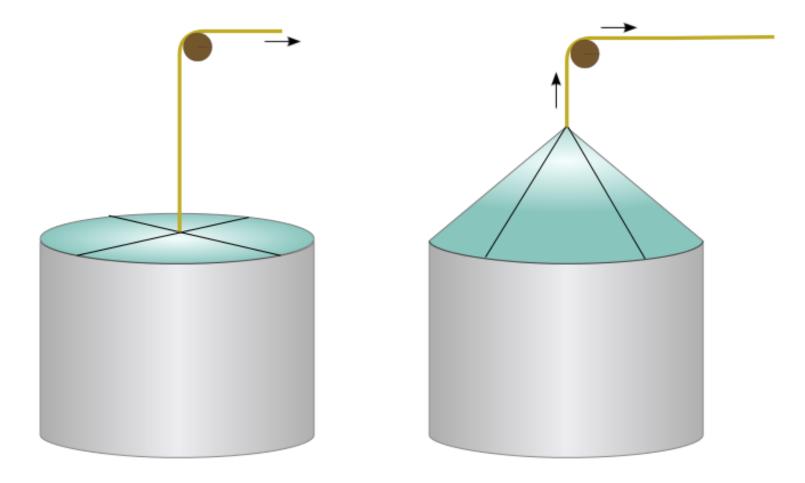
Introduction -<u>Design Alternatives-</u>

Chosen Design

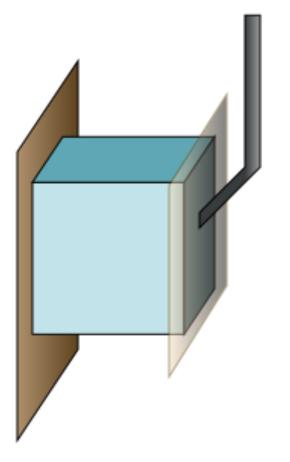

Organization

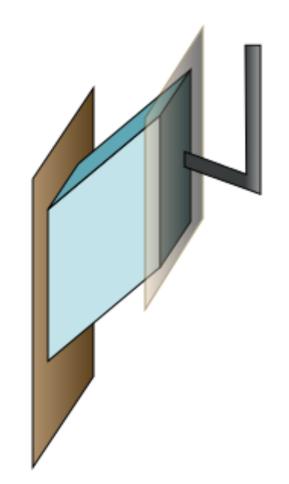


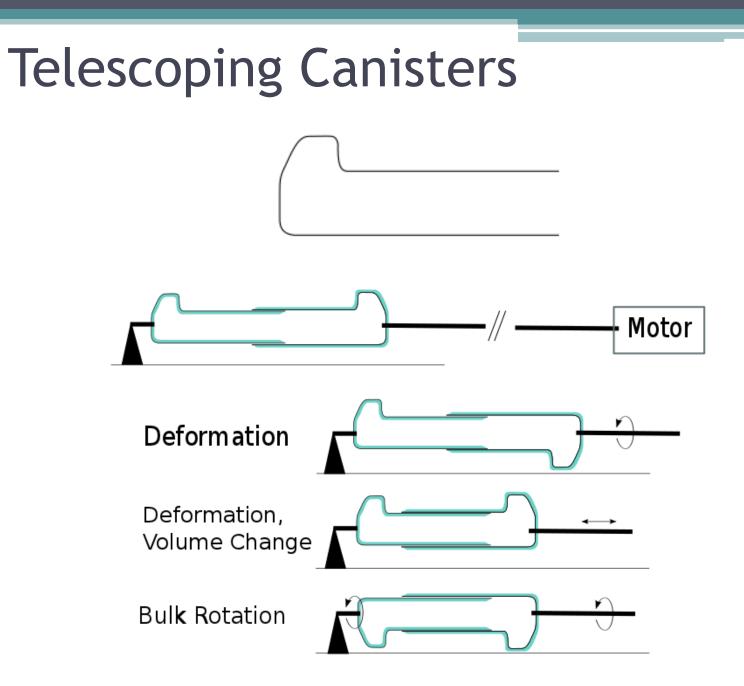
Introduction Design Alternatives - Design Analysis- Final Design Organization

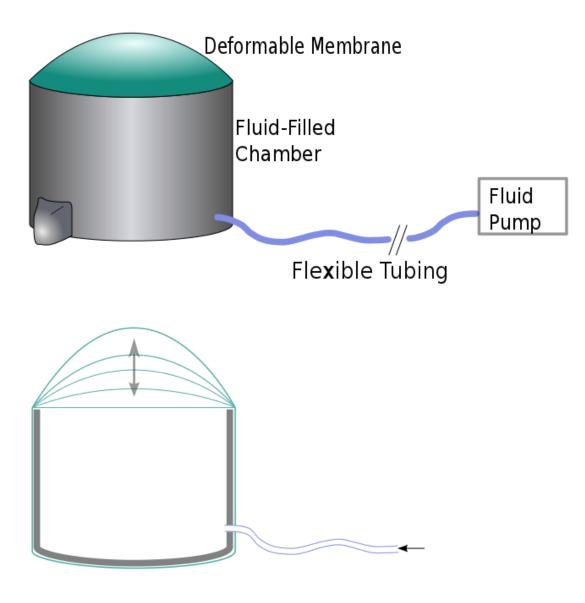

Pugh Chart Motion Mecha Existing Solutio		Weighing Factor	Annulus on Torqued Axle	Gel Cylinder Deformed with Piston	Iodized Foam De pressed with Piston	K'nex Model
Motion Types	3D Translation (5 ± 0.5 cm)	10	3	3	0	3
	3D Deformation (2 ± 0.5 cm)	8	9	7	3	0
	3D Rotation (±0.5°)	3	3	3	0	3
	Volume Change (25% max)	9	0	1	10	0
Motion Characteristics	Stable and Reproducible	10	9	10	10	1
	Time Resolution ≈ 0.1 ms	9	10	10	10	3
Motion Actuator	Simplicity	8	7	7	10	10
	Non-Interfering in MRI	8	7	10	4	10
Physical	Weight ≤150 lbs	3	10	10	10	10
Characteristics	Size ≤ 50x30x50 cm	3	10	10	3	5
	Cost \$10,000 - \$30,000	2	9	9	6	10
Qualitative	Organ-Like Shape	3	6	7	10	8
Characteristics	Tissue-Like Relaxation Parameters	7	10	8	0	10
	<u>Total</u>		569	585	497	395

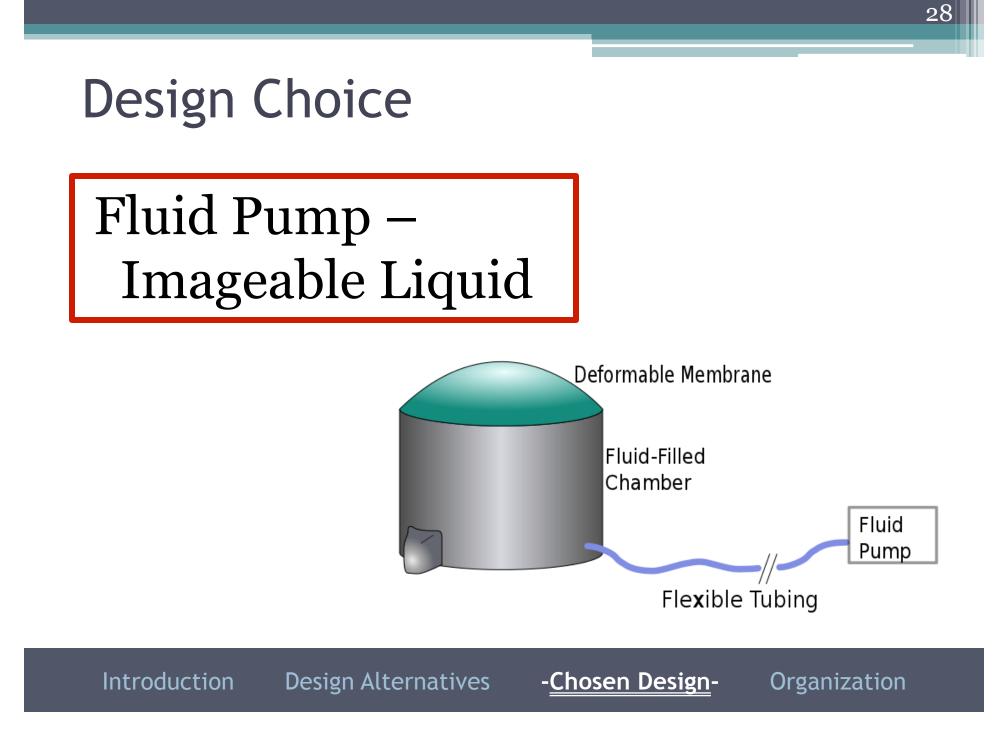
Stacked Disc






Drum Head


Elastic Box



Pugh Chart Motion Mechanisn Unique Models	15-	Weighting Factor	Telescoping Canisters	Fluid Pump- Imageable Liquid	Fluid Pump- Imageable Membrane	Drum Head	Stacked Disc	Elastic Box	Compressed Foam
Motion Types	3D Translation (5 ± 0.5 cm)	10	10	7	7	10	10	3	10
	3D Deformation (2 ± 0.5 cm)	8	6	10	10	10	3	10	3
	3D Rotation (± 0.5°)	3	4	4	4	6	5	0	3
	Volume Change (25% max)	9	7	10	10	10	5	10	10
Motion Characteristics	Stable and Reproducible	10	9	10	10	8	1	1	7
	Time Resolution ≈ 0.1 ms	9	10	7	7	10	2	1	10
Motion Actuator	Simplicity	8	4	10	10	10	3	3	6
	Non-Interfering in MRI	8	9	10	10	10	10	4	10
Physical Characteristics	Weight ≤ 150 lbs	3	10	10	10	10	10	10	10
	Size ≤ 50x30x50 cm	3	10	10	10	10	10	8	10
	Cost \$10,000 - \$30,000	2	9	6	6	9	4	9	6
Qualitative Characteristics	Organ-Like Shape	3	10	9	9	6	10	2	9
	Tissue-Like Relaxation Parameters	7	10	5	5	0	4	8	0
	<u>Total</u>		585	639	639	614	342	379	510

Fluid Pump Elements

- Materials
 - Elastic membrane (Silicone Membrane)

- Imageable liquid (Silicone Oil)
- Non-imageable casing (Plexiglas, Delrin)
 Flexible tubing
- Fluid Pump
- Motion Actuators
 - Translational/Rotational stage

- Material
 - Membrane
 - Membrane elastic properties
 - Maximum stretch and strain
 - General equations for deformation of a membrane (displacement)
 - Calculate relaxation times for Silicone Oil

- Material
 - Membrane
 - Membrane elastic properties
 - Maximum stretch and strain
 - General equations for deformation of a membrane (displacement)

- Calculate relaxation times for Silicone Oil
- Pump
 - Provide back and forth motion (Modified Syringe Pump)
 - Slow speed and appropriate volume
 - Equations to describe volume pushed into phantom at every time

- Material
 - Membrane
 - Membrane elastic properties
 - Maximum stretch and strain
 - General equations for deformation of a membrane (displacement)

- Calculate relaxation times for Silicone Oil
- Pump
 - Provide back and forth motion (Modified Syringe Pump)
 - Slow speed and appropriate volume
 - Equations to describe volume pushed into phantom at every time
- Motion Stage
 - Equations to describe motion of motion stage (position)

- Material
 - Membrane
 - Membrane elastic properties
 - Maximum stretch and strain
 - General equations for deformation of a membrane (displacement)
 - Calculate relaxation times for Silicone Oil
- Pump
 - Provide back and forth motion (Modified Syringe Pump)
 - Slow speed and appropriate volume
 - Equations to describe volume pushed into phantom at every time
- Motion Stage
 - Equations to describe motion of motion stage (position)
- Motor
 - Previous designs (Zhou 1999, Kee 2010)
 - Calculate safe distance for motor

29-Oct 12-Nov 19-Nov 26-Nov 5-Nov 3-Dec 10-Dec 17-Dec **Progress Oral Report Due Progress Written Report Due Details of Analytic Efforts Needed Mechanical Drawings Calculations for Relaxations Times Calculations for Membrane Deformation Calculations for Translation Pump and Motor Specifications** Part Numbers, Prices, and Lead Times **Planned Method of Assembly Overview of Manufacturing Processes Design Analysis Final Oral Report Due Final Written Report Due**

Design Schedule

Introduction D

Poster Project Competition

Design Alternatives

Chosen Design

-Organization-

Team Responsibilities

Jacie Sales	Leah Laux						
Mechanical drawings	Pump analysis						
Calculations for silicone oil relaxation times	Motor analysis						
Calculations for Membrane Deformation	Part numbers, prices, lead times						
Calculations for Translation/Rotation	Assembly/Manufacturing						
Final written report	Final oral report						
Poster project							

Introduction Design Alternatives Chosen Design -<u>Organization-</u>

References

- Chang J, Suh TS, Lee DS, Development of a deformable lung phantom for the evaluation of deformable registration (2010) Journal of Applied Clinical Medical Physics, 11 (1)
- Drangova, Maria. "Physiologic Motion Phantom for MRI Applications." Journal of Magnetic Resonance Imaging 6.3 (1996): 513-18. Print.
- Gullans, E., Ollinick, E., Rein, S., Saffos, C., Shilling, J., Yan, K.C., Pilla, J.J., Xu, C. Design of a dynamic heart phantom for magnetic resonance imaging (2009) Bioengineering, Proceedings of the Northeast Conference, art. no. 4967715.
- Huber, M.E., Stuber, M., Botnar, R.M., Boesiger, P., Manning, W.J. Low-cost MR-compatible moving heart phantom (2000) Journal of Cardiovascular Magnetic Resonance, 2 (3), pp. 181-187.
- Kashani, R., Lam, K., Litzenberg, D., Balter, J. Technical note: A deformable phantom for dynamic modeling in radiation therapy (2007) Medical Physics, 34 (1), pp. 199-201.
- Kee, S., Larsen, E., Paluch, K., Sinke, R., Yan, K.C., Pilla, J.J., Xu, C. Development of a dynamic heart phantom prototype for magnetic resonance imaging (2010) Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, NEBEC 2010, art. no. 5458235.
- Khan, Shirley. "Design of a Dynamic Cardiac MR Phantom for the Evaluation of Cardiac MR Systems." International Congress Sries 1256: 1165-70. Print.
- Yoshimura, Koichi. "Development of a Tissue-Equivalent MRI Phantom Using Carrageenan Gel." Magnetic Resonance in Medicine 50.5 (2003): 1011-17. Print.
- Zhou, Yong. "Design and Validation of a Motion Stage for In Vitro MR Experiments." Journal of Magnetic Resonance Imaging 10.6 (1999): 972-77. Print.